Biunitary constructions in quantum information

David Jakob Reutter, Jamie Vicary


We present an infinite number of construction schemes involving unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on biunitary connections, algebraic objects which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method.


Copyright © 2020 Department of Mathematics Macquarie University